Deep learning là gì? Các ví dụ thực tiễn về deep learning

Tiềm năng vô tận của deep learning thay thế con người trong các công việc mà chúng ta vẫn làm mỗi ngày tại nhà máy, kho, văn phòng và trong nhà vẫn là đề tài được thảo luận trong các cuộc hội thảo công nghệ thời gian gần đây. Cùng với sự phát triển chóng mặt của công nghệ, các thuật ngữ như trí tuệ nhân tạo AI, machine learning (ML) và deep learning (DL) ngày một xuất hiện nhiều hơn có thể sẽ khiến bạn bối rối. Do đó, bài viết sau đây sẽ giúp bạn có cái nhìn tổng quan hơn về mối liên hệ giữa các thuật ngữ này, giải đáp deep learning là gì và các ví dụ thực tiễn trong ứng dụng deep learning.

Deep learning là gì? Các ví dụ thực tiễn về deep learning

Deep learning là gì?

Trí tuệ nhân tạo hiện nay đóng một vai trò rất quan trọng khi máy móc có thể thực hiện các nhiệm vụ đòi hỏi trí thông minh của con người. Trong đó, bao gồm cả machine learning (hay học máy hoặc máy học), là công nghệ mà máy móc có thể tự học hỏi thông qua lịch sử làm việc và có được các kỹ năng mà không cần sự tham gia của con người. 

Deep learning là gì? Các ví dụ thực tiễn về deep learning

Deep learning là một tập hợp các machine learning trong một mạng nhân tạo với các thuật toán mô phỏng theo hệ thần kinh người, và thực hiện việc học hỏi từ một lượng lớn dữ liệu. Tương tự như cách chúng ta học hỏi từ kinh nghiệm, thuật toán deep learning sẽ thực hiện một nhiệm vụ nhiều lần, mỗi lần tinh chỉnh nhiệm vụ một chút để cải thiện kết quả.

Sở dĩ có tên gọi là deep learning là bởi các mạng mô phỏng có các lớp (có độ sâu) khác nhau theo mức độ học hỏi. Tất cả các vấn đề đòi hỏi khả năng "tư duy" để giải quyết, đều là những vấn đề deep learning có thể học hỏi và tìm ra giải pháp.

Lượng dữ liệu khổng lồ mà chúng ta tạo ra mỗi ngày có thể sẽ khiến bạn phải kinh ngạc — hiện ước tính có khoảng 2,6 nghìn tỷ byte dữ liệu — nguồn tài nguyên tạo ra khả năng ưu việt của deep learning. Vì thuật toán deep learning đòi hỏi một lượng dữ liệu rất lớn nên sự gia tăng đáng kể các dữ liệu được tạo ra này là một trong những lý do deep learning phát triển mạnh trong những năm gần đây.

Bên cạnh việc tạo ra nhiều dữ liệu hơn, các thuật toán deep learning cũng được hưởng lợi từ sức mạnh tính toán mạnh mẽ hơn và sự gia tăng của Artificial Intelligence (AI) as a Service - Trí tuệ nhân tạo như một Dịch vụ.

AI như một Dịch vụ cho phép các tổ chức quy mô nhỏ tiếp cận với công nghệ trí tuệ nhân tạo và cụ thể là các thuật toán AI cần thiết cho deep learning với khoản đầu tư ban đầu nhỏ.

Deep learning mở ra khả năng giải quyết các vấn đề phức tạp trong khi làm việc trên những bộ dữ liệu rất đa dạng, không có cấu trúc hay liên kết với nhau. Các thuật toán deep learning càng đào sâu nghiên cứu càng cung cấp những tiềm năng ứng dụng lớn hơn.

Một số ví dụ điển hình về deep learning

1. Trợ lý ảo

Bạn có thể đã biết hoặc đã rất quen thuộc với Alexa, Siri hay Cortana, các ứng dụng dạng trợ lý ảo này đều sử dụng deep learning để hiểu lời nói và ngôn ngữ mà con người sử dụng trong quá trình tương tác.

2. Dịch thuật

Cũng tương tự, thuật toán deep learning có thể tự động dịch các ngôn ngữ. Ứng dụng dạng này thường rất hữu ích cho khách du lịch, doanh nhân và quan chức chính phủ.

3. Tầm nhìn cho xe tải giao hàng - máy bay không người lái và ô tô tự lái

Xe tự lái có thể biết được tình trạng thực tế của con đường, phản ứng trước các tình huống như biển báo dừng, chướng ngại vật trên đường hay phương tiện trên đường là nhờ vào thuật toán deep learning. Các thuật toán càng nhận được nhiều dữ liệu thì càng có khả năng hành động giống như con người trong quá trình xử lý thông tin— phân biệt được biển báo dừng phủ tuyết vẫn là biển báo dừng…

4. Chatbot và các bot dịch vụ

Chatbots và các bot dịch vụ cung cấp cho rất nhiều doanh nghiệp khả năng phản hồi một cách thông minh và nhanh chóng theo kịch bản dưới dạng audio và văn bản nhờ vào việc ứng dụng deep learning.

Deep learning là gì? Các ví dụ thực tiễn về deep learning

5. Tô màu cho hình ảnh

Chuyển đổi hình ảnh đen trắng thành hình ảnh màu trước kia chỉ có thể thực hiện được bởi con người. Cho đến nay, các thuật toán deep learning có thể dựa vào bối cảnh và các đối tượng trong hình ảnh để phục chế màu từi hình ảnh đen trắng. Và hình ảnh sau phục chế vô cùng ấn tượng và chính xác.

6. Phục chế khuôn mặt

Deep learning được sử dụng trong nhận diện khuôn mặt không chỉ nhằm phục vụ cho mục đích bảo mật mà còn ứng dụng trong gắn thẻ mọi người trên các Facebook post. Và trong tương lai gần bạn có thể trả tiền cho các mặt hàng muốn mua bằng chính khuôn mặt của bạn. Những thách thức đối với deep learning khi nhận diện khuôn mặt là có thể xác định được chính xác một người ngay cả khi người đó thay đổi kiểu tóc, để râu hay cạo râu, hoặc chất lượng ảnh kém do ánh sáng…

7. Ứng dụng trong thuốc và dược phẩm

Từ chẩn đoán bệnh, chẩn đoán khối u cho đến các loại thuốc được tạo riêng cho từng bộ gen cá nhân, deep learning ứng dụng trong  y tế đang nhận được sự chú ý từ nhiều công ty dược phẩm và y tế lớn nhất hiện nay.

8. Cá nhân hóa mua sắm và giải trí 

Có bao giờ bạn tự hỏi làm thế nào Netflix có thể đưa ra các đề xuất phim hay chương trình bạn nên xem tiếp theo không? Hoặc làm sao Amazon lại có thể đưa ra chính xác ý tưởng cho những gì bạn nên mua tiếp theo ngay cả khi bạn không hề biết mình cần đến chúng? Đó chính là những ứng dụng ưu việt và cơ bản nhất của thuật toán deep learning. 

Deep learning là gì? Các ví dụ thực tiễn về deep learning

Càng có nhiều trải nghiệm, các thuật toán deep learning lại càng trở nên tinh vi hơn. Khi công nghệ này tiếp tục phát triển trong một vài năm tới, chúng ta có thể sẽ được chứng kiến một trong những giai đoạn phát triển vô cùng vượt bậc của xã hội con người!

Emarketer
Bài viết liên quan:
Copyright © 2012 - 2019 Dangkyemail.net. All Rights Reserved
Top